\(\int \sec ^3(c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx\) [873]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 64 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=-\frac {a^3 \log (1-\sin (c+d x))}{d}+\frac {a^5}{2 d (a-a \sin (c+d x))^2}-\frac {2 a^4}{d (a-a \sin (c+d x))} \]

[Out]

-a^3*ln(1-sin(d*x+c))/d+1/2*a^5/d/(a-a*sin(d*x+c))^2-2*a^4/d/(a-a*sin(d*x+c))

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2915, 12, 45} \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=\frac {a^5}{2 d (a-a \sin (c+d x))^2}-\frac {2 a^4}{d (a-a \sin (c+d x))}-\frac {a^3 \log (1-\sin (c+d x))}{d} \]

[In]

Int[Sec[c + d*x]^3*(a + a*Sin[c + d*x])^3*Tan[c + d*x]^2,x]

[Out]

-((a^3*Log[1 - Sin[c + d*x]])/d) + a^5/(2*d*(a - a*Sin[c + d*x])^2) - (2*a^4)/(d*(a - a*Sin[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {a^5 \text {Subst}\left (\int \frac {x^2}{a^2 (a-x)^3} \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {a^3 \text {Subst}\left (\int \frac {x^2}{(a-x)^3} \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {a^3 \text {Subst}\left (\int \left (\frac {a^2}{(a-x)^3}-\frac {2 a}{(a-x)^2}+\frac {1}{a-x}\right ) \, dx,x,a \sin (c+d x)\right )}{d} \\ & = -\frac {a^3 \log (1-\sin (c+d x))}{d}+\frac {a^5}{2 d (a-a \sin (c+d x))^2}-\frac {2 a^4}{d (a-a \sin (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.70 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=-\frac {a^3 \left (2 \log (1-\sin (c+d x))+\frac {3-4 \sin (c+d x)}{(-1+\sin (c+d x))^2}\right )}{2 d} \]

[In]

Integrate[Sec[c + d*x]^3*(a + a*Sin[c + d*x])^3*Tan[c + d*x]^2,x]

[Out]

-1/2*(a^3*(2*Log[1 - Sin[c + d*x]] + (3 - 4*Sin[c + d*x])/(-1 + Sin[c + d*x])^2))/d

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.24 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.53

method result size
risch \(i a^{3} x +\frac {2 i a^{3} c}{d}+\frac {2 i a^{3} \left (-3 i {\mathrm e}^{2 i \left (d x +c \right )}+2 \,{\mathrm e}^{3 i \left (d x +c \right )}-2 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{d \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{4}}-\frac {2 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}\) \(98\)
parallelrisch \(-\frac {2 \left (\left (-\frac {\cos \left (2 d x +2 c \right )}{2}+\frac {3}{2}-2 \sin \left (d x +c \right )\right ) \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (\cos \left (2 d x +2 c \right )-3+4 \sin \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\frac {3 \cos \left (2 d x +2 c \right )}{4}-\sin \left (d x +c \right )+\frac {3}{4}\right ) a^{3}}{d \left (\cos \left (2 d x +2 c \right )-3+4 \sin \left (d x +c \right )\right )}\) \(117\)
derivativedivides \(\frac {a^{3} \left (\frac {\left (\tan ^{4}\left (d x +c \right )\right )}{4}-\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )+3 a^{3} \left (\frac {\sin ^{5}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{5}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {3 \sin \left (d x +c \right )}{8}+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {3 a^{3} \left (\sin ^{4}\left (d x +c \right )\right )}{4 \cos \left (d x +c \right )^{4}}+a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}+\frac {\sin ^{3}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{8}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(202\)
default \(\frac {a^{3} \left (\frac {\left (\tan ^{4}\left (d x +c \right )\right )}{4}-\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )+3 a^{3} \left (\frac {\sin ^{5}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{5}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {3 \sin \left (d x +c \right )}{8}+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {3 a^{3} \left (\sin ^{4}\left (d x +c \right )\right )}{4 \cos \left (d x +c \right )^{4}}+a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}+\frac {\sin ^{3}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{8}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(202\)
norman \(\frac {\frac {14 a^{3} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {14 a^{3} \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {52 a^{3} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {52 a^{3} \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {4 a^{3} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {34 a^{3} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {56 a^{3} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {34 a^{3} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {4 a^{3} \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 a^{3} \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 a^{3} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 a^{3} \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}+\frac {a^{3} \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}\) \(320\)

[In]

int(sec(d*x+c)^5*sin(d*x+c)^2*(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

I*a^3*x+2*I*a^3/d*c+2*I*a^3/d/(exp(I*(d*x+c))-I)^4*(-3*I*exp(2*I*(d*x+c))+2*exp(3*I*(d*x+c))-2*exp(I*(d*x+c)))
-2*a^3/d*ln(exp(I*(d*x+c))-I)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.34 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=-\frac {4 \, a^{3} \sin \left (d x + c\right ) - 3 \, a^{3} + 2 \, {\left (a^{3} \cos \left (d x + c\right )^{2} + 2 \, a^{3} \sin \left (d x + c\right ) - 2 \, a^{3}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right )}{2 \, {\left (d \cos \left (d x + c\right )^{2} + 2 \, d \sin \left (d x + c\right ) - 2 \, d\right )}} \]

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^2*(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/2*(4*a^3*sin(d*x + c) - 3*a^3 + 2*(a^3*cos(d*x + c)^2 + 2*a^3*sin(d*x + c) - 2*a^3)*log(-sin(d*x + c) + 1))
/(d*cos(d*x + c)^2 + 2*d*sin(d*x + c) - 2*d)

Sympy [F(-1)]

Timed out. \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**5*sin(d*x+c)**2*(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.92 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=-\frac {2 \, a^{3} \log \left (\sin \left (d x + c\right ) - 1\right ) - \frac {4 \, a^{3} \sin \left (d x + c\right ) - 3 \, a^{3}}{\sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right ) + 1}}{2 \, d} \]

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^2*(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/2*(2*a^3*log(sin(d*x + c) - 1) - (4*a^3*sin(d*x + c) - 3*a^3)/(sin(d*x + c)^2 - 2*sin(d*x + c) + 1))/d

Giac [A] (verification not implemented)

none

Time = 0.47 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.95 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=\frac {6 \, a^{3} \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right ) - 12 \, a^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {25 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 112 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 186 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 112 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 25 \, a^{3}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{4}}}{6 \, d} \]

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^2*(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/6*(6*a^3*log(tan(1/2*d*x + 1/2*c)^2 + 1) - 12*a^3*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + (25*a^3*tan(1/2*d*x +
 1/2*c)^4 - 112*a^3*tan(1/2*d*x + 1/2*c)^3 + 186*a^3*tan(1/2*d*x + 1/2*c)^2 - 112*a^3*tan(1/2*d*x + 1/2*c) + 2
5*a^3)/(tan(1/2*d*x + 1/2*c) - 1)^4)/d

Mupad [B] (verification not implemented)

Time = 10.88 (sec) , antiderivative size = 313, normalized size of antiderivative = 4.89 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (4\,a^3\,\left (2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )-\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )\right )+a^3\,\left (4\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )-8\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )+2\right )\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (4\,a^3\,\left (2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )-\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )\right )+a^3\,\left (4\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )-8\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )+2\right )\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (6\,a^3\,\left (2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )-\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )\right )+a^3\,\left (6\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )-12\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )+6\right )\right )}{d\,{\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}^4}-\frac {a^3\,\left (2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )-\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )\right )}{d} \]

[In]

int((sin(c + d*x)^2*(a + a*sin(c + d*x))^3)/cos(c + d*x)^5,x)

[Out]

- (tan(c/2 + (d*x)/2)*(4*a^3*(2*log(tan(c/2 + (d*x)/2) - 1) - log(tan(c/2 + (d*x)/2)^2 + 1)) + a^3*(4*log(tan(
c/2 + (d*x)/2)^2 + 1) - 8*log(tan(c/2 + (d*x)/2) - 1) + 2)) + tan(c/2 + (d*x)/2)^3*(4*a^3*(2*log(tan(c/2 + (d*
x)/2) - 1) - log(tan(c/2 + (d*x)/2)^2 + 1)) + a^3*(4*log(tan(c/2 + (d*x)/2)^2 + 1) - 8*log(tan(c/2 + (d*x)/2)
- 1) + 2)) - tan(c/2 + (d*x)/2)^2*(6*a^3*(2*log(tan(c/2 + (d*x)/2) - 1) - log(tan(c/2 + (d*x)/2)^2 + 1)) + a^3
*(6*log(tan(c/2 + (d*x)/2)^2 + 1) - 12*log(tan(c/2 + (d*x)/2) - 1) + 6)))/(d*(tan(c/2 + (d*x)/2) - 1)^4) - (a^
3*(2*log(tan(c/2 + (d*x)/2) - 1) - log(tan(c/2 + (d*x)/2)^2 + 1)))/d